

pplied geoscience for our changing Earth

Monitoring ecosystem impacts of CO₂ storage – the RISCS project

Sarah Hannis on behalf of Dave Jones & Julie West

IEA GHG 6th Monitoring Network Meeting, Natchez, 6-8th May 2010

© NERC All rights reserved

<u>**R</u>esearch into <u>Impacts and <u>S</u>afety in <u>C**</u>O₂ <u>**S**</u>torage</u></u>

- Significant leakage from CO₂ storage is not expected
- If it occurred there could be adverse environmental effects
- These effects are not well constrained

RISCS aims to carry out research on impacts arising from known CO₂ fluxes (observed and modelled)

- In both marine and terrestrial environments
- Through experiments and natural field observations

Project overview

RISCS will provide information to underpin

- Evaluation of safety of storage sites
- Environmental Impact Assessments
- Safe design of sites to minimise impacts
- Design of near surface monitoring strategies
- Refining of storage licence applications/conditions
- Frameworks to communicate safety of storage

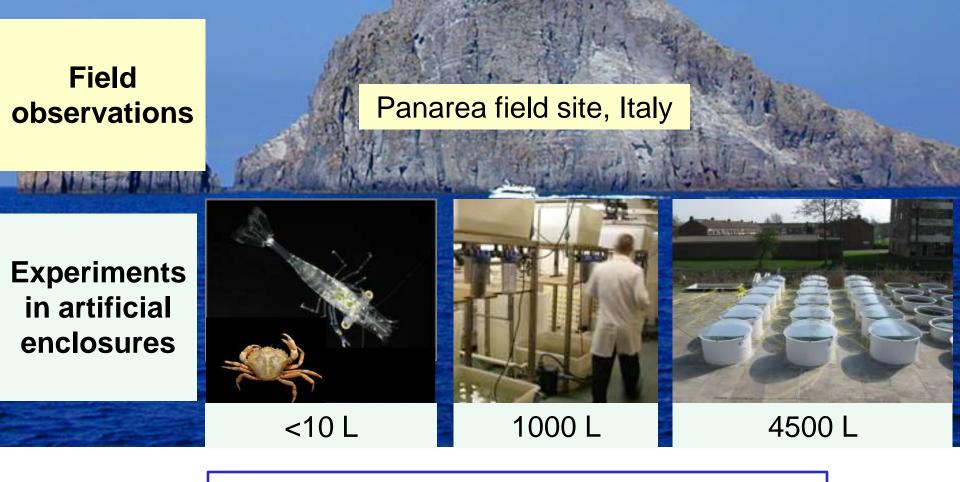
Ultimate output is 'Guide for Impact Assessment'

Project overview

- **4 year project**, fully funded, started January 2010
- **24 participants** (UK, Greece, Netherlands, Italy, Norway, Sweden, France, Germany) + Australia, Canada, USA
- 6 industrial (Enel, Statoil, Vattenfall, EoN, PPC, RWE) providing funding (c €200k each), research input, advice
- **4 non-European** (CO₂CRC & Montana State, Regina, Stanford universities) in advisory role
- 1 NGO (ZERO)
- CO₂GeoNet (Primarily represented by NIVA, BRGM in addition to 5 participants)
- IEA-GHG advice and help with dissemination

Project organisation

- WP1 Description of reference environments and scenarios
- WP2 Assessing impacts in marine environments
- WP3 Assessing impacts in terrestrial environments
- WP4 Assessing impacts numerical simulations
- WP5 Integration and dissemination
- WP6 Coordination/management


Experiments and field observations

WP1 Description of reference environments and scenarios

- Develop a comprehensive set of credible CO₂ impact scenarios for varied near-surface reference environments
- The scenario analysis process will explore:
 - CCS systems main features, events & processes (FEPs)
 - How CCS systems are likely to evolve with time
 - Potential failure/leakage mechanisms
 - Potential human/ecological impact mechanisms
- The scenarios will be a basis for the experiments, field studies and models investigating impacts
- The overall purpose of the scenarios is to provide a sound basis for the regulation and monitoring of CO₂ storage sites.

WP2 Assessing impacts in marine environments

+ Benthic chamber lander

WP2.1 Experiments in artificial enclosures

- Response & recovery of individual species
 - Growth, survival, reproduction
- Response & recovery of benthic communities
 - Microbial, meiofauna and macrofauna Including:
 - Speed and scale of impacts
 - Speed of lateral recolonisation
 - Speed of larval recruitment
- Benthic chamber 3 exposure experiments at 3 exposure rates in 400m water for 10 days (in Norway)

WP2.1 Experiments in artificial enclosures

-	
	Таха
	Crustaceans
	Mollusks
	Polychaetes
	Plankton community
	Micro-organisms
	Macro-meiofauna
© NERC All rights reserved	

Chemical/physical parameters

pН

Temperature

Salinity

Dissolved oxygen

Nutrients

DOC

DIC

Alkalinity

Pressure

Nutrient fluxes

Mixing

Biological

parameters

Haemolymphe

parameters

Growth

Survival

Reproduction

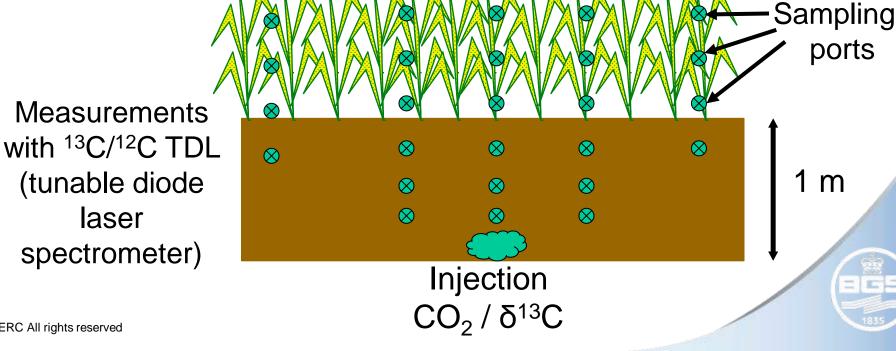
WP2.2 Field observations

- At Panarea, southern Italy, CO₂ is naturally leaking to the water column (~20 m water depth)
- Diffuse and localised leaks, gas vents with a range of flow intensity
- To address: system complexity, spatial-temporal variability
- To extrapolate the experiments into real-world situations

WP2.2 Field observations

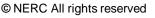
An integrated study will be performed:

- **Chemical** Conductivity-temperature-depth (CTD) transects, water sampling (Niskin bottle and multi-parameter probe) & continuous monitoring station
- **Biological** virus & prokaryote abundances, prokaryote community structure, in-situ benthic flux measurements
- **Physical** Acoustic Doppler Current Profiler (ADCP) to determine circulation, vertical and horizontal structure components of the current during seasonal sampling


WP3 Assessing impacts in terrestrial environments

Field experiments

Northern Europe
Norwegian experiments
UK (ASGARD) experiments


Field observations

Southern EuropeItaly, Greece, France

- Exposure (simulated CO₂ leak)
- Effects (greenhouse experiments)

WP3.1 Norwegian experiments

WP3.2 ASGARD University of Nottingham experimental site injecting controlled amounts of CO₂

information of the states of

Lab

CO₂ injection to 60 cm

Access tube for monitoring

Gas supply

WP3.2 ASGARD

- Test detection techniques
 - Remote sensing
 - Isotope analysis
 - Continuous monitoring

- Monitor changes in plant and soil conditions (chemistry, microbiology)
- Test sensitivity to soil and plant types and gas concentration (impact thresholds, effects on roots,

ecosystem recovery)

WP3.3 Naturally leaking sites in southern Europe

- Florina well site, Latera, San Vittorino & Montmiral sites
- Variety of flux rates, time scales and gas compositions
- Impact of leaking gas on:
 - Vegetation (spatially and through time)
 - **Potable groundwater quality** (water origin, mixing and water-rock-gas interaction)
- Impact of using CO₂-impacted groundwater for crop irrigation

WP4 Assessing impacts – numerical simulations

- **Synthesise** information from WPs 1, 2 & 3
- Quantify CO₂ transport onshore and offshore in space/time and the associated chemical perturbation
- Develop a:
 - Marine systems model describing the key biogeochemical and ecological components relevant to CO₂ and its impacts in shallow sediment layer and overlying water column (varying depth, mixing, temperatures and fauna)
 - Terrestrial systems model representing the important processes in the transport of CO₂ to and in the nearsurface terrestrial environment, and its impacts (e.g. pH evolution and groundwater quality)

Guide for Impact Assessment

Inform key stakeholder groups on specific issues:

- What to consider when appraising potential impacts in the event of leakage from a storage site
- How to evaluate the potential impacts of storage project development: design stage, construction, operation, post-injection and to enable transfer of site liability to the competent authority
- Options for directly assessing the potential scales (temporal and aerial, realistic leakage ranges (fluxes, masses)) and ecosystem responses
- Options for identifying, predicting and verifying the nature of impacts

Project coordinator:

Dave G Jones Email: dgj@bgs.ac.uk Tel: +44 115 936 3576

Presented by Sarah Hannis, s.hannis@bgs.ac.uk